The average value of a NZ home now $619,660, in Auckland it's $1,031,253

Average housing values are continuing to rise throughout the country but the rate of growth is slowing, according to Quotable Value (QV).

The average value of a New Zealand home is now $622,309 based on sales over the three months to the end of October.

That’s up 12.7% compared to the same period last year, but that rate of growth is slowing.

The average value of a New Zealand home at the end of September was $619,660, which was up 14.3% compared to the same period of last year.

The same trend is evident in the upper North Island centres, where property values continue to rise, but at a slower pace, with the annual increase in housing values in Auckland declining from 15% in September to 13.8% in October, while in Hamilton it declined from 27.1% to 25%. In Tauranga it was down from 28.1% in September to 27% in October.

According to QV the rate at which housing values are increasing in Auckland is the slowest it has been since March last year.

New LVR restrictions take effect, Wellington unaffected

However that may not be much comfort to people struggling to get into the housing market in Auckland, where the average value of a home is now $1,031,253. and even in Franklin, the southern most part of Auckland which has the cheapest house prices, the average value is $629,381 (see the table below for average values and annual growth rates for all parts of the country).

“The QV House Price Index is now showing a slight tick to the right which reflects an easing in the annual rate of growth over the past month as the latest round of LVR restrictions begin to take effect,” QV national spokesperson Andrea Rush said.

“Sales volumes are down by around 12% on the same period last year and mortgage approval rates are also down.

“Home values continue to rise faster in the Wellington region than the Auckland region and the housing market in the capital appears largely unaffected by the new LVR restrictions, particularly at the more affordable end of the market in areas such as the Hutt Valley, Porirua and the Kapiti Coast.

“Auckland, Tauranga and Hamilton home values are continuing to rise, just at a slightly slower pace than they were prior to the new LVR measures being introduced.

“The Dunedin market also continues to see good levels of activity and demand, while investors are less active in the Christchurch market and home values there continue to show only modest growth.

“The new build market remains strong as the new LVR restrictions for investors do not apply for new homes.

“Less established investors appear to having difficulty raising finance with the new 40% deposit requirement, while recent CoreLogic Buyer Classification Data shows that 34% of investors with five or more properties do not need to raise a mortgage so are not affected by the new LVR rules.

“Those investors shut out of the more expensive markets appear to be turning their sights to more affordable markets in relatively close proximity to North Island main centres,” Rush said.

QV House Price Index October 2015
Territorial authority Average current value 12 month change%
Auckland Region 1,045,207 13.8%
Wellington Region 558,886 21.1%
Main Urban Areas         747,507 12.6%
Total New Zealand/Nationwide 622,309 12.7%
     
Whangarei 451,874 23.9%
Kaipara 436,144 20.2%
Auckland – Rodney 918,899 17.1%
Rodney – Hibiscus Coast 896,988 16.4%
Rodney – North 940,204 17.5%
Auckland – North Shore 1,220,550 13.5%
North Shore – Coastal 1,391,044 12.9%
North Shore – Onewa 990,038 13.9%
North Shore – North Harbour 1,179,794 14.4%
Auckland – Waitakere 837,300 13.5%
Auckland – City 1,209,199 12.0%
Auckland City – Central 1,040,640 11.4%
Auckland_City – East 1,497,097 11.4%
Auckland City – South 1,112,901 13.0%
Auckland City – Islands 1,032,945 16.5%
Auckland – Manukau 906,128 15.6%
Manukau – East 1,173,581 16.7%
Manukau – Central 698,842 13.9%
Manukau – North West 768,563 16.0%
Auckland – Papakura 683,031 16.3%
Auckland – Franklin 641,668 13.9%
Thames Coromandel 623,536 15.5%
Hauraki 324,565 24.3%
Waikato 420,770 30.2%
Matamata Piako 367,901 24.9%
Hamilton 537,388 25.0%
Hamilton – North East 687,161 26.8%
Hamilton – Central & North West 500,392 25.3%
Hamilton – South East 489,753 23.8%
Hamilton – South West 467,546 23.1%
Waipa 465,856 23.8%
Otorohanga 242,854 17.2%
South Waikato 174,620 23.4%
Waitomo 164,567 11.8%
Taupo 413,176 16.8%
Western BOP 596,782 33.0%
Tauranga 651,725 27.0%
Rotorua 362,583 25.9%
Whakatane 373,817 23.8%
Kawerau 151,957 49.3%
Opotiki 259,963 21.2%
Gisborne 256,490 10.4%
Wairoa 165,063 12.1%
Hastings 366,083 16.3%
Napier 396,000 18.1%
Central Hawkes Bay 232,718 9.5%
New Plymouth 402,526 9.9%
Stratford 230,372 8.6%
South Taranaki 201,793 8.1%
Ruapehu 151,169 13.1%
Whanganui 204,553 12.0%
Rangitikei 159,097 10.5%
Manawatu 277,404 11.5%
Palmerston North 335,136 12.7%
Tararua 162,470 10.2%
Horowhenua 240,800 15.3%
Kapiti Coast 458,013 18.5%
Porirua 470,059 21.7%
Upper Hutt 405,550 19.6%
Hutt 460,572 22.6%
Wellington 671,387 21.3%
Wellington – Central & South 673,584 19.4%
Wellington – East 722,209 22.5%
Wellington – North 594,589 22.2%
Wellington – West 785,452 23.2%
Masterton 263,384 11.0%
Carterton 306,842 17.0%
South Wairarapa 344,807 13.2%
Tasman 485,666 12.8%
Nelson 484,019 13.8%
Marlborough 410,484 14.4%
Kaikoura 387,698 7.7%
Buller 188,680 -3.2%
Grey 204,470 -3.2%
Westland 231,861 0.0%
Hurunui 364,973 -0.1%
Waimakariri 430,173 3.7%
Christchurch 498,425 4.7%
Christchurch – East 376,670 4.3%
Christchurch – Hills 680,656 7.1%
Christchurch – Central & North 587,282 4.9%
Christchurch – Southwest 447,107 -1.4%
Christchurch – Banks Peninsula 507,707 6.4%
Selwyn 541,536 5.1%
Ashburton 350,641 4.8%
Timaru 333,399 6.8%
MacKenzie 383,839 18.6%
Waimate 219,464 5.8%
Waitaki 252,402 9.2%
Central Otago 408,830 21.5%
Queenstown Lakes 974,564 29.8%
Dunedin 341,566 13.0%
Dunedin – Central & North 354,449 12.4%
Dunedin – Peninsular & Coastal 305,445 11.9%
Dunedin – South 326,917 14.3%
Dunedin – Taieri 354,447 12.7%
Clutha 183,785 12.9%
Southland 220,621 5.3%
Gore 199,523 7.8%
Invercargill 229,342 7.2%

QV house price index

<!–

var root_url = "http://www.interest.co.nz/charts-csv/";
var tabs_count="2";
var csvfiles_loc= ["/charts-csv/chart_data/real estate/qv-index.csv"," /charts-csv/chart_data/real estate/qv-indexgrowth.csv"];
var chart_title_arr= ["QV house price index","QV house price index growth"];
var chart_subtitles_arr= ["monthly","monthly"];
var tab_titles_arr= ["Index","% change year on year"];
var source_arr= ["QV","QV"];
var source_hyperlink_arr= ["13"];
var tabswidth="13";
var decimal_arr= ["1","1","1"];

// variable declaration
var xpad;
var padding_value=0;
var range_selector=0
var loc;
var updt;
var val_num;
var vi=0;
var max_val;
var x;

var finalAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
finalAr[i] = new Array();
}
var flagAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
flagAr[i] =[];
}
var yaxisAr = new Array();
for (var i = 0; i 536)
{
var b = arr.length – 536; // to get last 36 points
}
else if (arr.length < 536)
{
var b = 537 – arr.length;
}
else if(arr.length == 536)
{
var b=2;
}

// to generate the format for date representation in x axis

var timestamweek = 604800000;
var timestamday = 86400000;
var timestammonth30 = 2592000000;
var timestammonth31 = 2678400000;
var timestamyear = 31536000000;
var timestamquarterly = 7776000000;

for (var u=0;u<2;u++) {
arr[u] = parseLineCSV(arr[u]);
fomat= String(arr[u][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);
var yy1=fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == " Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date2 = mm+"/"+dd+"/"+yy;

if (u==0)
{
var timestam1 = Date.parse(date2);
}
else if(u==1)
{
var timestam2 = Date.parse(date2);
}
}
var timestamvar = (timestam2- timestam1);
var flagAR_count=0;
for (var i=2;i<arr.length;i++) {
flagAR_count++;
var tempAr = new Array();
var tempAr1 = new Array();
arr[i] = parseLineCSV(arr[i]);
if (arr[i]!='')
{

fomat= String(arr[i][0]);
replic=String(arr[i][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var current_year=""+new Date().getFullYear();
var c_year=Number(current_year.substring(2,4));
var c_data=Number(''+fomat.substring(k2+1,k3+1));
if(c_data c_year)
{
var yy = “19”+fomat.substring(k2+1,k3+1);
}
else if(c_data == c_year)
{
var yy = “20”+fomat.substring(k2+1,k3+1);
}
// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == “Jan”)
{
mm= “01”;
}
else if (mm == “Feb”)
{
mm= “02”;
}

else if (mm == “Mar”)
{
mm= “03”;
}

else if (mm == “Apr”)
{
mm= “04”;
}

else if (mm == “May”)
{
mm= “05”;
}

else if (mm == “Jun”)
{
mm= “06”;
}

else if (mm == “Jul”)
{
mm= “07”;
}

else if (mm == “Aug”)
{
mm= “08”;
}

else if (mm == “Sep”)
{
mm= “09”;
}

else if (mm == “Oct”)
{
mm= “10”;
}

else if (mm == “Nov”)
{
mm= “11”;
}

else if (mm == “Dec”)
{
mm= “12”;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+”/”+dd+”/”+yy;

var timestam_1 = Date.parse(date);
var timestam= timestam_1+86400000; //86400000 added to get correct timezone output from Date.parse
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();
var flag_y=arr[i][1];
var ahref_title=”Click here for full story”;
if(arr[i][2]) {
var url=arr[i][2];
var flag_date='{“x”:’+timestam+’, “title”:”  “,”text”:”Click here for Story!”}’;

flagAr[csvgen_counter].push(flag_date);
}
var yy2 = time4.getFullYear();
var yy3 = yy2+””;
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = “Mon”;
}

else if (Weeko==2)
{
Weeko = “Tue”;
}

else if (Weeko==3)
{
Weeko = “Wed”;
}

else if (Weeko==4)
{
Weeko = “Thu”;
}

else if (Weeko==5)
{
Weeko = “Fri”;
}

else if (Weeko==6)
{
Weeko = “Sat”;
}

else if (Weeko==0)
{
Weeko = “Sun”;
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = “Jan”;
}

else if (mm2==1)
{
mm2 = “Feb”;
}

else if (mm2==2)
{
mm2 = “Mar”;
}

else if (mm2==3)
{
mm2 = “Apr”;
}

else if (mm2==4)
{
mm2 = “May”;
}

else if (mm2==5)
{
mm2 = “Jun”;
}

else if (mm2==6)
{
mm2 = “Jul”;
}

else if (mm2==7)
{
mm2 = “Aug”;
}

else if (mm2==8)
{
mm2 = “Sep”;
}

else if (mm2==9)
{
mm2 = “Oct”;
}

else if (mm2==10)
{
mm2 = “Nov”;
}

else if (mm2==11)
{
mm2 = “Dec”;
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamweek;
range_selector=2;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamyear;
range_selector=3;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamquarterly;
range_selector=3;
}

else
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamday;
range_selector=3;
}

arr[i][0]= fomat2;
var decpad;
decpad = parseFloat(arr[i][1]);
arr[i][1] = decpad;

if(i==(arr.length-1))
{

// Functionality to get the last value

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}

tempAr.push(timestam);
if(!arr[i][1])
{
arr[i][1]=null;
}
yaxisAr[csvgen_counter].push(arr[i][1]);
// tempAr1.push(timestam);
// tempAr2.push(tempAr1);
tempAr.push(arr[i][1]);
last_val=timestam;
finalAr[csvgen_counter].push(tempAr);
}
xpad=last_val+padding_value; //*****************to end up graph early//////
if(arr[i]== “”)
{
vi=arr.length-i;
arr.length=arr.length-vi;
i=arr.length-1;
fomat = replic;

var k=0;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == "Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+"/"+dd+"/"+yy;
//here flagAr may be
var timestam = Date.parse(date);
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();

var yy2 = time4.getFullYear();
var yy3 = yy2+"";
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = "Mon";
}

else if (Weeko==2)
{
Weeko = "Tue";
}

else if (Weeko==3)
{
Weeko = "Wed";
}

else if (Weeko==4)
{
Weeko = "Thu";
}

else if (Weeko==5)
{
Weeko = "Fri";
}

else if (Weeko==6)
{
Weeko = "Sat";
}

else if (Weeko==0)
{
Weeko = "Sun";
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = "Jan";
}

else if (mm2==1)
{
mm2 = "Feb";
}

else if (mm2==2)
{
mm2 = "Mar";
}

else if (mm2==3)
{
mm2 = "Apr";
}

else if (mm2==4)
{
mm2 = "May";
}

else if (mm2==5)
{
mm2 = "Jun";
}

else if (mm2==6)
{
mm2 = "Jul";
}

else if (mm2==7)
{
mm2 = "Aug";
}

else if (mm2==8)
{
mm2 = "Sep";
}

else if (mm2==9)
{
mm2 = "Oct";
}

else if (mm2==10)
{
mm2 = "Nov";
}

else if (mm2==11)
{
mm2 = "Dec";
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+"-"+mm2+"-"+yy4;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
}

arr[i][0]= fomat2;
var decpad;

decpad = parseFloat(arr[i][1]);
//arr[i][1] = roundVal(decpad);
arr[i][1] = decpad;
if(i==(arr.length-1))
{

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}
}

}
}

//other required functions

//chart configuration starts here

function getXMLHttpRequest(file) {

//var arrSignatures = [“MSXML2.XMLHTTP.5.0”, “MSXML2.XMLHTTP.4.0″,
//”MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
//”Microsoft.XMLHTTP”];

//for (var i=0; i < arrSignatures.length; i++) {

try
{
var xmlhttp = new window.XMLHttpRequest();
xmlhttp.open("POST",file,false);
return xmlhttp;
}
catch(e)
{
error=e.message;
}

//}
throw new Error("MSXML is not installed on your system.");
}

function readCSV(locfile) {
// load a whole csv file, and then split it line by line
var req = new getXMLHttpRequest(locfile);
//req.open("POST",locfile,false);
req.send("");
return req.responseText.split(/n/g);
}

function parseLineCSV(lineCSV) {
// parse csv line by line into array
var CSV = new Array();

lineCSV = lineCSV.replace(/,/g," ,");

lineCSV = lineCSV.split(/,/g);

// This is continuing of 'split' issue in IE
// remove all trailing space in each field
for (var i=0;i<lineCSV.length;i++) {
lineCSV[i] = lineCSV[i].replace(/s*$/g,"");
}

lineCSV[lineCSV.length-1]=lineCSV[lineCSV.length-1].replace(/^s*|s*$/g,"");
var fstart = -1;

for (var i=0;i=0) {
for (var j=fstart+1;j<=i;j++) {
lineCSV[fstart]=lineCSV[fstart]+","+lineCSV[j];
lineCSV[j]="-DELETED-";

}
fstart=-1;
}
}
fstart = (lineCSV[i].match(/^"/)) ? i : fstart;
}

var j=0;

for (var i=0;i<lineCSV.length;i++) {
if (lineCSV[i]!="-DELETED-") {
CSV[j] = lineCSV[i];
j++;
}

}

return CSV;
}

function roundVal(val_num){
var dec = 2;
var result = Math.round(val_num*Math.pow(10,dec))/Math.pow(10,dec);
return result;
}

function setdecimalpoints(deca)
{
var deca1= deca;
var deca2= parseInt(deca);
if((deca1-deca2)!=0)
{
return 2;
}
else
{
return 0;
}
}
for(i=0;i

Charts loading…
Charts loading…