Latest rural sales figures from REINZ show farm sale numbers at healthy levels; overall prices ease slightly compared with a year ago, but dairy prices up

Sale activity down at the farm has continued the buoyant pattern of recent months.

Overall prices were down a little compared with a year ago – due to slightly lower grazing farm prices – but dairy farm prices were up.

Data released by the Real Estate Institute of NZ (“REINZ”) shows there were 66 more farm sales (+16.2%) for the three months ended April 2017 than for the three months ended April 2016.  

Overall, there were 473 farm sales in the three months ended April 2017, compared to 438 farm sales for the three months ended March 2017 (+8.0%), and 407 farm sales for the three months ended April 2016.  1,815 farms were sold in the year to April 2017, 5.0% more than were sold in the year to April 2016, with 20% more dairy farms and 11% fewer grazing farms sold over the same period.

The median price per hectare for all farms sold in the three months to April 2017 was $28,368 compared to $30,000 recorded for three months ended April 2016 (-5.4%).  The median price per hectare rose 3.1% compared to March. 

The REINZ All Farm Price Index rose 1.1% in the three months to April 2017 compared to the three months to March 2017.  Compared to April 2016 the REINZ All Farm Price Index rose 5.9%.  The REINZ All Farm Price Index adjusts for differences in farm size, location and farming type, unlike the median price per hectare, which does not adjust for these factors.

10 regions recorded increases in sales volume for the three months ended April 2017 compared to the three months ended April 2016.  Waikato recorded the largest increase in sales (+29 sales), followed by Otago (+17 sales) and Taranaki (+13 sales). Compared to the three months ended March 2017, eight regions recorded an increase in sales.

“Sales figures for the three month period ending 30 April 2017 confirm confidence in the rural sector, with a significant lift in volumes from 12 months ago”, says REINZ Rural Spokesman Brian Peacocke, “The continuation of high rainfall during April has been a major boost for farmers in many regions around the country but has proved to be a problem in other areas with considerable flooding and interruption of seasonal harvesting.”

“Dairy sector morale moves in tandem with the strengthening milk price, albeit volatility remains an issue, and beef farmers are experiencing strong results, particularly those selling weaner beef cattle in sale-yards around the country. The moist autumn has frustrated some in the arable sector as ground conditions for harvesting maize crops, in particular, has been an issue, with heavy rain washing out some recently re-grassed areas.  Such conditions have also been an impediment for parts of the horticulture and viniculture sectors.”

Lifestyle blocks

In contrast to farm sales, the sales of lifestyle blocks were down on those of a year ago.

The REINZ data on these shows there were 220 fewer lifestyle property sales (-9.3%) for the three months ended April 2017 than for the three months ended April 2016.  Overall, there were 2,156 lifestyle property sales in the three months ended April 2017, compared to 2,011 lifestyle property sales for the three months ended March 2017 (+7.2%), and 2,376 lifestyle property sales for the three months ended April 2016.

8,745 lifestyle properties were sold in the year to April 2017, 26 (+0.3%) more than were sold in the year to April 2016.  The value of lifestyle properties sold was $6.84 billion for the year to April 2017.

The median price for all lifestyle properties sold in the three months to April 2017 reached a new record high of $635,000 and was $72,500 higher compared to the three months ended April 2016 (+12.9%).  

“Sales data for the three month period ending 30 April 2017 confirms that values have reached another peak, but the market has experienced a considerable reduction in volumes during April 2017 of approximately 35 % from the figures recorded during the previous month. All regions apart from Gisborne and the West Coast have experienced such reductions”, says Peacocke.

Farm sales

<!–

var root_url = "http://www.interest.co.nz/charts-csv/";
var tabs_count="15";
var csvfiles_loc= ["/charts-csv/chart_data/real estate/farms-nzl.csv"," /charts-csv/chart_data/real estate/farms-nth.csv"," /charts-csv/chart_data/real estate/farms-akl.csv"," /charts-csv/chart_data/real estate/farms-wai.csv"," /charts-csv/chart_data/real estate/farms-bop.csv"," /charts-csv/chart_data/real estate/farms-gis.csv"," /charts-csv/chart_data/real estate/farms-hby.csv"," /charts-csv/chart_data/real estate/farms-tar.csv"," /charts-csv/chart_data/real estate/farms-man.csv"," /charts-csv/chart_data/real estate/farms-wlg.csv"," /charts-csv/chart_data/real estate/farms-nml.csv"," /charts-csv/chart_data/real estate/farms-wcs.csv"," /charts-csv/chart_data/real estate/farms-can.csv"," /charts-csv/chart_data/real estate/farms-otg.csv"," /charts-csv/chart_data/real estate/farms-sth.csv"];
var chart_title_arr= ["Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold","Farms sold"];
var chart_subtitles_arr= ["New Zealand","Northland","Auckland","Waikato","Bay of Plenty","Gisborne","Hawkes Bay","Taranaki","Manawatu Wanganui","Wellington","Nelson Marlborough","West Coast","Canterbury","Otago","Southland"];
var tab_titles_arr= ["New Zealand","Northland","Auckland","Waikato","Bay of Plenty","Gisborne","Hawkes Bay","Taranaki","Manawatu Wanganui","Wellington","Nelson Marlborough","West Coast","Canterbury","Otago","Southland"];
var source_arr= ["REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ","REINZ"];
var source_hyperlink_arr= ["2"];
var tabswidth="2";
var decimal_arr= ["0","0","0","0","0","0","0","0","0","0","0","0","0","0","0"];

// variable declaration
var xpad;
var padding_value=0;
var range_selector=0
var loc;
var updt;
var val_num;
var vi=0;
var max_val;
var x;

var finalAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
finalAr[i] = new Array();
}
var flagAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
flagAr[i] =[];
}
var yaxisAr = new Array();
for (var i = 0; i 536)
{
var b = arr.length – 536; // to get last 36 points
}
else if (arr.length < 536)
{
var b = 537 – arr.length;
}
else if(arr.length == 536)
{
var b=2;
}

// to generate the format for date representation in x axis

var timestamweek = 604800000;
var timestamday = 86400000;
var timestammonth30 = 2592000000;
var timestammonth31 = 2678400000;
var timestamyear = 31536000000;
var timestamquarterly = 7776000000;

for (var u=0;u<2;u++) {
arr[u] = parseLineCSV(arr[u]);
fomat= String(arr[u][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);
var yy1=fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == " Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date2 = mm+"/"+dd+"/"+yy;

if (u==0)
{
var timestam1 = Date.parse(date2);
}
else if(u==1)
{
var timestam2 = Date.parse(date2);
}
}
var timestamvar = (timestam2- timestam1);
var flagAR_count=0;
for (var i=2;i<arr.length;i++) {
flagAR_count++;
var tempAr = new Array();
var tempAr1 = new Array();
arr[i] = parseLineCSV(arr[i]);
if (arr[i]!='')
{

fomat= String(arr[i][0]);
replic=String(arr[i][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var current_year=""+new Date().getFullYear();
var c_year=Number(current_year.substring(2,4));
var c_data=Number(''+fomat.substring(k2+1,k3+1));
if(c_data c_year)
{
var yy = “19”+fomat.substring(k2+1,k3+1);
}
else if(c_data == c_year)
{
var yy = “20”+fomat.substring(k2+1,k3+1);
}
// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == “Jan”)
{
mm= “01”;
}
else if (mm == “Feb”)
{
mm= “02”;
}

else if (mm == “Mar”)
{
mm= “03”;
}

else if (mm == “Apr”)
{
mm= “04”;
}

else if (mm == “May”)
{
mm= “05”;
}

else if (mm == “Jun”)
{
mm= “06”;
}

else if (mm == “Jul”)
{
mm= “07”;
}

else if (mm == “Aug”)
{
mm= “08”;
}

else if (mm == “Sep”)
{
mm= “09”;
}

else if (mm == “Oct”)
{
mm= “10”;
}

else if (mm == “Nov”)
{
mm= “11”;
}

else if (mm == “Dec”)
{
mm= “12”;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+”/”+dd+”/”+yy;

var timestam_1 = Date.parse(date);
var timestam= timestam_1+86400000; //86400000 added to get correct timezone output from Date.parse
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();
var flag_y=arr[i][1];
var ahref_title=”Click here for full story”;
if(arr[i][2]) {
var url=arr[i][2];
var flag_date='{“x”:’+timestam+’, “title”:”  “,”text”:”Click here for Story!”}’;

flagAr[csvgen_counter].push(flag_date);
}
var yy2 = time4.getFullYear();
var yy3 = yy2+””;
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = “Mon”;
}

else if (Weeko==2)
{
Weeko = “Tue”;
}

else if (Weeko==3)
{
Weeko = “Wed”;
}

else if (Weeko==4)
{
Weeko = “Thu”;
}

else if (Weeko==5)
{
Weeko = “Fri”;
}

else if (Weeko==6)
{
Weeko = “Sat”;
}

else if (Weeko==0)
{
Weeko = “Sun”;
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = “Jan”;
}

else if (mm2==1)
{
mm2 = “Feb”;
}

else if (mm2==2)
{
mm2 = “Mar”;
}

else if (mm2==3)
{
mm2 = “Apr”;
}

else if (mm2==4)
{
mm2 = “May”;
}

else if (mm2==5)
{
mm2 = “Jun”;
}

else if (mm2==6)
{
mm2 = “Jul”;
}

else if (mm2==7)
{
mm2 = “Aug”;
}

else if (mm2==8)
{
mm2 = “Sep”;
}

else if (mm2==9)
{
mm2 = “Oct”;
}

else if (mm2==10)
{
mm2 = “Nov”;
}

else if (mm2==11)
{
mm2 = “Dec”;
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamweek;
range_selector=2;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamyear;
range_selector=3;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamquarterly;
range_selector=3;
}

else
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamday;
range_selector=3;
}

arr[i][0]= fomat2;
var decpad;
decpad = parseFloat(arr[i][1]);
arr[i][1] = decpad;

if(i==(arr.length-1))
{

// Functionality to get the last value

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}

tempAr.push(timestam);
if(!arr[i][1])
{
arr[i][1]=null;
}
yaxisAr[csvgen_counter].push(arr[i][1]);
// tempAr1.push(timestam);
// tempAr2.push(tempAr1);
tempAr.push(arr[i][1]);
last_val=timestam;
finalAr[csvgen_counter].push(tempAr);
}
xpad=last_val+padding_value; //*****************to end up graph early//////
if(arr[i]== “”)
{
vi=arr.length-i;
arr.length=arr.length-vi;
i=arr.length-1;
fomat = replic;

var k=0;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == "Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+"/"+dd+"/"+yy;
//here flagAr may be
var timestam = Date.parse(date);
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();

var yy2 = time4.getFullYear();
var yy3 = yy2+"";
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = "Mon";
}

else if (Weeko==2)
{
Weeko = "Tue";
}

else if (Weeko==3)
{
Weeko = "Wed";
}

else if (Weeko==4)
{
Weeko = "Thu";
}

else if (Weeko==5)
{
Weeko = "Fri";
}

else if (Weeko==6)
{
Weeko = "Sat";
}

else if (Weeko==0)
{
Weeko = "Sun";
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = "Jan";
}

else if (mm2==1)
{
mm2 = "Feb";
}

else if (mm2==2)
{
mm2 = "Mar";
}

else if (mm2==3)
{
mm2 = "Apr";
}

else if (mm2==4)
{
mm2 = "May";
}

else if (mm2==5)
{
mm2 = "Jun";
}

else if (mm2==6)
{
mm2 = "Jul";
}

else if (mm2==7)
{
mm2 = "Aug";
}

else if (mm2==8)
{
mm2 = "Sep";
}

else if (mm2==9)
{
mm2 = "Oct";
}

else if (mm2==10)
{
mm2 = "Nov";
}

else if (mm2==11)
{
mm2 = "Dec";
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+"-"+mm2+"-"+yy4;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
}

arr[i][0]= fomat2;
var decpad;

decpad = parseFloat(arr[i][1]);
//arr[i][1] = roundVal(decpad);
arr[i][1] = decpad;
if(i==(arr.length-1))
{

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}
}

}
}

//other required functions

//chart configuration starts here

function getXMLHttpRequest(file) {

//var arrSignatures = [“MSXML2.XMLHTTP.5.0”, “MSXML2.XMLHTTP.4.0″,
//”MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
//”Microsoft.XMLHTTP”];

//for (var i=0; i < arrSignatures.length; i++) {

try
{
var xmlhttp = new window.XMLHttpRequest();
xmlhttp.open("POST",file,false);
return xmlhttp;
}
catch(e)
{
error=e.message;
}

//}
throw new Error("MSXML is not installed on your system.");
}

function readCSV(locfile) {
// load a whole csv file, and then split it line by line
var req = new getXMLHttpRequest(locfile);
//req.open("POST",locfile,false);
req.send("");
return req.responseText.split(/n/g);
}

function parseLineCSV(lineCSV) {
// parse csv line by line into array
var CSV = new Array();

lineCSV = lineCSV.replace(/,/g," ,");

lineCSV = lineCSV.split(/,/g);

// This is continuing of 'split' issue in IE
// remove all trailing space in each field
for (var i=0;i<lineCSV.length;i++) {
lineCSV[i] = lineCSV[i].replace(/s*$/g,"");
}

lineCSV[lineCSV.length-1]=lineCSV[lineCSV.length-1].replace(/^s*|s*$/g,"");
var fstart = -1;

for (var i=0;i=0) {
for (var j=fstart+1;j<=i;j++) {
lineCSV[fstart]=lineCSV[fstart]+","+lineCSV[j];
lineCSV[j]="-DELETED-";

}
fstart=-1;
}
}
fstart = (lineCSV[i].match(/^"/)) ? i : fstart;
}

var j=0;

for (var i=0;i<lineCSV.length;i++) {
if (lineCSV[i]!="-DELETED-") {
CSV[j] = lineCSV[i];
j++;
}

}

return CSV;
}

function roundVal(val_num){
var dec = 2;
var result = Math.round(val_num*Math.pow(10,dec))/Math.pow(10,dec);
return result;
}

function setdecimalpoints(deca)
{
var deca1= deca;
var deca2= parseInt(deca);
if((deca1-deca2)!=0)
{
return 2;
}
else
{
return 0;
}
}
for(i=0;i

Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…
Charts loading…