Average value of homes in Auckland likely to pass $1 million threshold later this year

The average value of homes in Auckland is now $975,087, according to Quotable Value, making it increasingly likely that the average value of homes in the region will pass the million dollar milestone later this year.

QV’s valuation figures based on sales for the three months ended June show that property values around the country are continuing to rise.

The average value of all homes in the country, was $590,909 in June, up 13.5% compared to a year earlier.

In the Wellington region it was $516,430 in June, up 12.4% for the year and in Christchurch it was $491,148, up 3.6% for the year.

However the biggest increase in dwelling values over the last year has occurred just south of Auckland. Average values in Hamilton rose 29% over the last 12 months to hit $492,403 in June, and in Tauranga they have risen 23.6% over the last year to hit $599,915 in June.

QV national spokesperson Andrea Rush said housing values were rising at their fastest rate since 2004.

“Many housing markets around the country are continuing to be driven by strong investor demand, low interest rates, rapid price growth in the Auckland market and strong net migration,” she said.

The latest CoreLogic data showed that 46% of all sales in Auckland were to investors, she said.

“The Reserve Bank is considering introducing further restrictions on property investors and it appears this may have led to a surge in investor purchases in various housing markets around the country over the last month,” she said.

There are now only two places in the country where average dwelling values are less than they were 12 months ago, Wairoa on the east coast of the North Island, where the average value was $148,049 in June, down 2.4% compared to a year ago, and Westland, where the average value was $218,688 in June, down 5.7% compared to a year earlier.

The second most expensive place in the country after Auckland is the Queenstown Lakes District, where the average dwelling value was $899,335 in June, up 25% compared to a year earlier.

See the table below for the average dwelling values throughout the country.

QV House Price Index June 2016:

Territorial authority Average current value $  12 month  change% 3 month  change %
Auckland Area        975,087 16.1% 4.7%
Wellington Area  516,430 12.4% 5.1%
Main Urban Areas  706,477 14.1% 5.9%
Total NZ        590,909 13.5% 5.6%
Far North 351,792 14.5% 4.6%
Whangarei 411,931 18.2% 4.1%
Kaipara        418,962 19.4% 7.2%
Auckland – Rodney 854,183 16.9% 2.9%
Rodney – Hibiscus Coast 842,575 16.6% 3.8%
Rodney – North 867,065 17.1% 2.0%
Auckland – North Shore 1,135,868 15.0% 5.4%
North Shore – Coastal 1,296,298 14.9% 6.2%
North Shore – Onewa 913,236 13.7% 5.3%
North Shore – North Harbour 1,107,688 17.0% 3.9%
Auckland – Waitakere 771,270 15.0% 4.3%
Auckland – City 1,146,639 14.3% 4.9%
Auckland City – Central 995,878 15.4% 3.8%
Auckland_City – East 1,432,904 14.2% 5.2%
Auckland City – South 1,039,992 13.5% 5.2%
Auckland City – Islands 970,126 17.5% 7.2%
Auckland – Manukau 842,142 20.4% 5.3%
Manukau – East 1,083,365 18.1% 5.8%
Manukau – Central 649,964 21.7% 4.3%
Manukau – North West 724,180 23.7% 5.8%
Auckland – Papakura 626,439 22.6% 2.2%
Auckland – Franklin 611,898 17.9% 3.7%
Thames Coromandel 579,314 10.9% 2.3%
Hauraki 307,340 18.6% 7.5%
Waikato 385,618 26.4% 4.7%
Matamata Piako 341,805 20.1% 4.5%
Hamilton 492,403 29.0% 6.9%
Hamilton – North East 628,043 29.6% 8.4%
Hamilton – Central & North West 451,921 26.4% 5.4%
Hamilton – South East 449,378 29.2% 5.3%
Hamilton – South West 435,483 29.8% 6.7%
Waipa 435,827 21.3% 6.1%
Otorohanga 234,027 13.1% 4.5%
South Waikato 154,866 20.7% 7.0%
Waitomo 168,500 2.6% 14.7%
Taupo 387,697 12.4% 3.2%
Western BOP 526,756 20.9% 5.8%
Tauranga 599,915 23.6% 4.9%
Rotorua 327,596 20.2% 7.2%
Whakatane 349,171 14.8% 9.1%
Kawerau 131,004 21.6% 10.1%
Opotiki 241,948 21.6% 7.9%
Gisborne 237,185 4.4% 1.1%
Wairoa 148,059 -2.4% 1.3%
Hastings 345,577 11.6% 4.4%
Napier 372,963 13.0% 4.0%
Central Hawkes Bay 231,582 6.6% 3.8%
New Plymouth 389,369 8.2% 2.5%
Stratford 218,478 8.8% 2.1%
South Taranaki 189,418 1.8% 1.8%
Ruapehu 143,267 9.5% 2.6%
Whanganui 197,299 7.3% 3.5%
Rangitikei 152,895 7.4% 3.7%
Manawatu 265,827 10.0% 2.3%
Palmerston North 315,930 8.4% 3.0%
Tararua 156,623 1.8% 0.3%
Horowhenua 226,759 9.8% 4.7%
Kapiti Coast 421,743 10.0% 4.6%
Porirua 423,388 10.5% 3.8%
Upper Hutt 366,480 8.6% 4.9%
Hutt 413,488 9.5% 4.6%
Wellington 625,319 14.4% 5.4%
Wellington – Central & South 627,244 13.3% 5.7%
Wellington – East 689,324 16.5% 6.0%
Wellington – North 548,069 14.3% 5.0%
Wellington – West 728,296 15.7% 5.7%
Masterton 246,070 1.2% -0.8%
Carterton 281,372 6.8% -0.1%
South Wairarapa 328,463 8.0% 2.1%
Tasman 456,144 9.8% 3.4%
Nelson 460,495 11.4% 3.1%
Marlborough 385,818 9.5% 2.9%
Kaikoura 392,516 5.3% 2.8%
Buller N/A N/A N/A
Grey 212,097 0.1% 2.2%
Westland 218,688 -5.7% -4.4%
Hurunui 359,413 3.9% -0.5%
Waimakariri 427,756 2.4% 1.1%
Christchurch 491,148 3.6% 1.1%
Christchurch – East 372,878 4.2% 1.1%
Christchurch – Hills 663,657 3.3% 1.7%
Christchurch – Central & North 577,779 4.0% 1.3%
Christchurch – Southwest 464,539 2.7% 0.5%
Christchurch – Banks Peninsula 514,123 5.3% 4.3%
Selwyn 532,151 2.7% 0.0%
Ashburton 350,775 7.9% 3.2%
Timaru 322,763 7.0% 1.1%
MacKenzie 356,688 14.9% 3.6%
Waimate 218,210 7.0% 1.3%
Waitaki 238,272 3.8% 1.0%
Central Otago 384,718 17.2% 7.9%
Queenstown Lakes 899,335 25.0% 10.9%
Dunedin 327,664 10.7% 4.0%
Dunedin – Central & North 342,492 12.3% 4.4%
Dunedin – Peninsular & Coastal 290,662 4.5% 2.7%
Dunedin – South 312,140 9.6% 4.1%
Dunedin – Taieri 340,573 11.6% 3.8%
Clutha 174,414 3.8% -1.7%
Southland 216,756 1.9% 0.3%
Gore 195,477 9.3% 2.7%
Invercargill 221,391 6.3% 1.7%

QV house price index

<!–

var root_url = "http://www.interest.co.nz/charts-csv/";
var tabs_count="2";
var csvfiles_loc= ["/charts-csv/chart_data/real estate/qv-index.csv"," /charts-csv/chart_data/real estate/qv-indexgrowth.csv"];
var chart_title_arr= ["QV house price index","QV house price index growth"];
var chart_subtitles_arr= ["monthly","monthly"];
var tab_titles_arr= ["Index","% change year on year"];
var source_arr= ["QV","QV"];
var source_hyperlink_arr= ["13"];
var tabswidth="13";
var decimal_arr= ["1","1","1"];

// variable declaration
var xpad;
var padding_value=0;
var range_selector=0
var loc;
var updt;
var val_num;
var vi=0;
var max_val;
var x;

var finalAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
finalAr[i] = new Array();
}
var flagAr = new Array();
for (var i = 0; i <= tabs_count; i++) {
flagAr[i] =[];
}
var yaxisAr = new Array();
for (var i = 0; i 536)
{
var b = arr.length – 536; // to get last 36 points
}
else if (arr.length < 536)
{
var b = 537 – arr.length;
}
else if(arr.length == 536)
{
var b=2;
}

// to generate the format for date representation in x axis

var timestamweek = 604800000;
var timestamday = 86400000;
var timestammonth30 = 2592000000;
var timestammonth31 = 2678400000;
var timestamyear = 31536000000;
var timestamquarterly = 7776000000;

for (var u=0;u<2;u++) {
arr[u] = parseLineCSV(arr[u]);
fomat= String(arr[u][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);
var yy1=fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == " Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date2 = mm+"/"+dd+"/"+yy;

if (u==0)
{
var timestam1 = Date.parse(date2);
}
else if(u==1)
{
var timestam2 = Date.parse(date2);
}
}
var timestamvar = (timestam2- timestam1);
var flagAR_count=0;
for (var i=2;i<arr.length;i++) {
flagAR_count++;
var tempAr = new Array();
var tempAr1 = new Array();
arr[i] = parseLineCSV(arr[i]);
if (arr[i]!='')
{

fomat= String(arr[i][0]);
replic=String(arr[i][0]);
var k=0;

do {
k++;
} while(fomat.charAt(k)!="-")
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!="-")
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var current_year=""+new Date().getFullYear();
var c_year=Number(current_year.substring(2,4));
var c_data=Number(''+fomat.substring(k2+1,k3+1));
if(c_data c_year)
{
var yy = “19”+fomat.substring(k2+1,k3+1);
}
else if(c_data == c_year)
{
var yy = “20”+fomat.substring(k2+1,k3+1);
}
// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == “Jan”)
{
mm= “01”;
}
else if (mm == “Feb”)
{
mm= “02”;
}

else if (mm == “Mar”)
{
mm= “03”;
}

else if (mm == “Apr”)
{
mm= “04”;
}

else if (mm == “May”)
{
mm= “05”;
}

else if (mm == “Jun”)
{
mm= “06”;
}

else if (mm == “Jul”)
{
mm= “07”;
}

else if (mm == “Aug”)
{
mm= “08”;
}

else if (mm == “Sep”)
{
mm= “09”;
}

else if (mm == “Oct”)
{
mm= “10”;
}

else if (mm == “Nov”)
{
mm= “11”;
}

else if (mm == “Dec”)
{
mm= “12”;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+”/”+dd+”/”+yy;

var timestam_1 = Date.parse(date);
var timestam= timestam_1+86400000; //86400000 added to get correct timezone output from Date.parse
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();
var flag_y=arr[i][1];
var ahref_title=”Click here for full story”;
if(arr[i][2]) {
var url=arr[i][2];
var flag_date='{“x”:’+timestam+’, “title”:”  “,”text”:”Click here for Story!”}’;

flagAr[csvgen_counter].push(flag_date);
}
var yy2 = time4.getFullYear();
var yy3 = yy2+””;
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = “Mon”;
}

else if (Weeko==2)
{
Weeko = “Tue”;
}

else if (Weeko==3)
{
Weeko = “Wed”;
}

else if (Weeko==4)
{
Weeko = “Thu”;
}

else if (Weeko==5)
{
Weeko = “Fri”;
}

else if (Weeko==6)
{
Weeko = “Sat”;
}

else if (Weeko==0)
{
Weeko = “Sun”;
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = “Jan”;
}

else if (mm2==1)
{
mm2 = “Feb”;
}

else if (mm2==2)
{
mm2 = “Mar”;
}

else if (mm2==3)
{
mm2 = “Apr”;
}

else if (mm2==4)
{
mm2 = “May”;
}

else if (mm2==5)
{
mm2 = “Jun”;
}

else if (mm2==6)
{
mm2 = “Jul”;
}

else if (mm2==7)
{
mm2 = “Aug”;
}

else if (mm2==8)
{
mm2 = “Sep”;
}

else if (mm2==9)
{
mm2 = “Oct”;
}

else if (mm2==10)
{
mm2 = “Nov”;
}

else if (mm2==11)
{
mm2 = “Dec”;
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamweek;
range_selector=2;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamyear;
range_selector=3;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
padding_value=timestamquarterly;
range_selector=3;
}

else
{
fomat2=dd2+”-“+mm2+”-“+yy4;
padding_value=timestamday;
range_selector=3;
}

arr[i][0]= fomat2;
var decpad;
decpad = parseFloat(arr[i][1]);
arr[i][1] = decpad;

if(i==(arr.length-1))
{

// Functionality to get the last value

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}

tempAr.push(timestam);
if(!arr[i][1])
{
arr[i][1]=null;
}
yaxisAr[csvgen_counter].push(arr[i][1]);
// tempAr1.push(timestam);
// tempAr2.push(tempAr1);
tempAr.push(arr[i][1]);
last_val=timestam;
finalAr[csvgen_counter].push(tempAr);
}
xpad=last_val+padding_value; //*****************to end up graph early//////
if(arr[i]== “”)
{
vi=arr.length-i;
arr.length=arr.length-vi;
i=arr.length-1;
fomat = replic;

var k=0;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k1 =k;

do {
k++;
} while(fomat.charAt(k)!=”-“)
var k2=k;

do {
k++;
} while(k<fomat.length)
var k3=k;

var dd= fomat.substring(0,k1);
var mm = fomat.substring(k1+1,k2);
var yy = "20"+fomat.substring(k2+1,k3+1);

// conversion of months into numerical form

//+++++++++++++++++++++++++++++++++++
if (mm == "Jan")
{
mm= "01";
}
else if (mm == "Feb")
{
mm= "02";
}

else if (mm == "Mar")
{
mm= "03";
}

else if (mm == "Apr")
{
mm= "04";
}

else if (mm == "May")
{
mm= "05";
}

else if (mm == "Jun")
{
mm= "06";
}

else if (mm == "Jul")
{
mm= "07";
}

else if (mm == "Aug")
{
mm= "08";
}

else if (mm == "Sep")
{
mm= "09";
}

else if (mm == "Oct")
{
mm= "10";
}

else if (mm == "Nov")
{
mm= "11";
}

else if (mm == "Dec")
{
mm= "12";
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++

var date = mm+"/"+dd+"/"+yy;
//here flagAr may be
var timestam = Date.parse(date);
var time4 = new Date(timestam);
var Weeko = time4.getDay();
var dd2 = time4.getDate();
var mm2 = time4.getMonth();

var yy2 = time4.getFullYear();
var yy3 = yy2+"";
var yy4= yy3.substring(2,4);
//++++++++++++++++++++++++this for days conversion++++++++++++++++++++++++++++
if (Weeko==1)
{
Weeko = "Mon";
}

else if (Weeko==2)
{
Weeko = "Tue";
}

else if (Weeko==3)
{
Weeko = "Wed";
}

else if (Weeko==4)
{
Weeko = "Thu";
}

else if (Weeko==5)
{
Weeko = "Fri";
}

else if (Weeko==6)
{
Weeko = "Sat";
}

else if (Weeko==0)
{
Weeko = "Sun";
}

//+++++++++++++++++++++++this is for month conversion+++++

if (mm2==0)
{
mm2 = "Jan";
}

else if (mm2==1)
{
mm2 = "Feb";
}

else if (mm2==2)
{
mm2 = "Mar";
}

else if (mm2==3)
{
mm2 = "Apr";
}

else if (mm2==4)
{
mm2 = "May";
}

else if (mm2==5)
{
mm2 = "Jun";
}

else if (mm2==6)
{
mm2 = "Jul";
}

else if (mm2==7)
{
mm2 = "Aug";
}

else if (mm2==8)
{
mm2 = "Sep";
}

else if (mm2==9)
{
mm2 = "Oct";
}

else if (mm2==10)
{
mm2 = "Nov";
}

else if (mm2==11)
{
mm2 = "Dec";
}
//++++++++++++++++++++++++++++++++++++++++

//weekly
if ( timestamvar == timestamweek)
{
fomat2=dd2+"-"+mm2+"-"+yy4;
}

// Daily
else if ( timestamvar = timestamyear)
{
fomat2=mm2+”-“+yy4;
}

//monthly
else if ((timestamvar <= timestammonth30)&&(timestamvar = timestamquarterly)
{
fomat2=mm2+”-“+yy4;
}

arr[i][0]= fomat2;
var decpad;

decpad = parseFloat(arr[i][1]);
//arr[i][1] = roundVal(decpad);
arr[i][1] = decpad;
if(i==(arr.length-1))
{

var xvalu=dd2+”-“+mm2+”-“+yy4;
var yvalu= String(arr[i][1]);
var xyvalu=”Latest value at “+xvalu+” is “+yvalu;
updt=”Updated on “+xvalu;
}
}

}
}

//other required functions

//chart configuration starts here

function getXMLHttpRequest(file) {

//var arrSignatures = [“MSXML2.XMLHTTP.5.0”, “MSXML2.XMLHTTP.4.0″,
//”MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
//”Microsoft.XMLHTTP”];

//for (var i=0; i < arrSignatures.length; i++) {

try
{
var xmlhttp = new window.XMLHttpRequest();
xmlhttp.open("POST",file,false);
return xmlhttp;
}
catch(e)
{
error=e.message;
}

//}
throw new Error("MSXML is not installed on your system.");
}

function readCSV(locfile) {
// load a whole csv file, and then split it line by line
var req = new getXMLHttpRequest(locfile);
//req.open("POST",locfile,false);
req.send("");
return req.responseText.split(/n/g);
}

function parseLineCSV(lineCSV) {
// parse csv line by line into array
var CSV = new Array();

lineCSV = lineCSV.replace(/,/g," ,");

lineCSV = lineCSV.split(/,/g);

// This is continuing of 'split' issue in IE
// remove all trailing space in each field
for (var i=0;i<lineCSV.length;i++) {
lineCSV[i] = lineCSV[i].replace(/s*$/g,"");
}

lineCSV[lineCSV.length-1]=lineCSV[lineCSV.length-1].replace(/^s*|s*$/g,"");
var fstart = -1;

for (var i=0;i=0) {
for (var j=fstart+1;j<=i;j++) {
lineCSV[fstart]=lineCSV[fstart]+","+lineCSV[j];
lineCSV[j]="-DELETED-";

}
fstart=-1;
}
}
fstart = (lineCSV[i].match(/^"/)) ? i : fstart;
}

var j=0;

for (var i=0;i<lineCSV.length;i++) {
if (lineCSV[i]!="-DELETED-") {
CSV[j] = lineCSV[i];
j++;
}

}

return CSV;
}

function roundVal(val_num){
var dec = 2;
var result = Math.round(val_num*Math.pow(10,dec))/Math.pow(10,dec);
return result;
}

function setdecimalpoints(deca)
{
var deca1= deca;
var deca2= parseInt(deca);
if((deca1-deca2)!=0)
{
return 2;
}
else
{
return 0;
}
}
for(i=0;i

Charts loading…
Charts loading…